Trees with equal total domination and game total domination numbers
نویسندگان
چکیده
In this paper, we continue the study of the total domination game in graphs introduced in [Graphs Combin. 31(5) (2015), 1453–1462], where the players Dominator and Staller alternately select vertices of G. Each vertex chosen must strictly increase the number of vertices totally dominated, where a vertex totally dominates another vertex if they are neighbors. This process eventually produces a total dominating set S of G in which every vertex is totally dominated by a vertex in S. Dominator wishes to minimize the number of vertices chosen, while Staller wishes to maximize it. The game total domination number, γtg(G), (respectively, Staller-start game total domination number, γ ′ tg(G)) of G is the number of vertices chosen when Dominator (respectively, Staller) starts the game and both players play optimally. For general graphs G, sometimes γtg(G) > γ ′ tg(G). We show that if G is a forest with no isolated vertex, then γtg(G) ≤ γ′ tg(G). Using this result, we characterize the trees with equal total domination and game total domination number.
منابع مشابه
On trees with equal Roman domination and outer-independent Roman domination numbers
A Roman dominating function (RDF) on a graph $G$ is a function $f : V (G) to {0, 1, 2}$satisfying the condition that every vertex $u$ for which $f(u) = 0$ is adjacent to at least onevertex $v$ for which $f(v) = 2$. A Roman dominating function $f$ is called an outer-independentRoman dominating function (OIRDF) on $G$ if the set ${vin Vmid f(v)=0}$ is independent.The (outer-independent) Roman dom...
متن کاملConstruction of trees and graphs with equal domination parameters
We provide a simple constructive characterization for trees with equal domination and independent domination numbers, and for trees with equal domination and total domination numbers. We also consider a general framework for constructive characterizations for other equality problems.
متن کاملOn Trees with Equal Total Domination and 2-outer-independent Domination Numbers
For a graph G = (V,E), a subset D ⊆ V (G) is a total dominating set if every vertex of G has a neighbor in D. The total domination number of G is the minimum cardinality of a total dominating set of G. A subset D ⊆ V (G) is a 2-dominating set of G if every vertex of V (G) \ D has at least two neighbors in D, while it is a 2-outer-independent dominating set of G if additionally the set V (G) \ D...
متن کاملA characterization of trees with equal Roman 2-domination and Roman domination numbers
Given a graph $G=(V,E)$ and a vertex $v in V$, by $N(v)$ we represent the open neighbourhood of $v$. Let $f:Vrightarrow {0,1,2}$ be a function on $G$. The weight of $f$ is $omega(f)=sum_{vin V}f(v)$ and let $V_i={vin V colon f(v)=i}$, for $i=0,1,2$. The function $f$ is said to bebegin{itemize}item a Roman ${2}$-dominating function, if for every vertex $vin V_0$, $sum_{uin N(v)}f(u)geq 2$. The R...
متن کاملTrees with Equal Total Domination and Total Restrained Domination Numbers
For a graph G = (V, E), a set S ⊆ V (G) is a total dominating set if it is dominating and both 〈S〉 has no isolated vertices. The cardinality of a minimum total dominating set in G is the total domination number. A set S ⊆ V (G) is a total restrained dominating set if it is total dominating and 〈V (G) − S〉 has no isolated vertices. The cardinality of a minimum total restrained dominating set in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 226 شماره
صفحات -
تاریخ انتشار 2017